Smart Terminal Parameter Examples

From OpenCircuits
Revision as of 08:44, 8 November 2017 by Russ hensel (Talk | contribs)

Jump to: navigation, search

Contents

What/Why the Parameter File

A lot of the behaviour of the terminal is controlled by the file parameters.py. Different projects of mine require different parameters. There are several way to achieve this. The simplest to understand might be to have a different files for each project. You can do this if you want, starting from my parameter file. You can also use a secondary parameter file that overrides the settings in the first file. But right now I am working with a somewhat different method that seems easier to manage. This is the method in the supplied parameter file and the one that I will explain here. The parameter file is heavily commented and these comments should be read if you have questions. You can also search other files for parameters.xxx where xxx is the name of the parameter you are investigating.

In the __init__ method after a couple of required lines that help hold the application there is a call to self.default_terminal_mode(). This subroutine sets a ton of parameters and this is enough to make the terminal run nicely. See the comments in the subroutine for more info.

I then have a call to a short ( so far ) subroutine self.computer_name_tweaks( ) This subroutine uses the already set parameter computername to tweak a few settings depending on the computer's name. this makes it easy for me to change the default parameters setting based on the computer I am using to run the program. Thus I can move the program around without changing the parameter file.

Finally I make a call to a subroutine like: well_monitor_mode(). This is the file for an arduino project that monitors my water well pressure. This is a pretty complicated set up, because of the database access in the well monitor. For this documentation I will do a subroutine called tutorial_example_mode() which make the most basic changes from the default mode.

tutorial_example_mode()

Read the comments, they are pretty clear:


    def tutorial_example_mode( self, ):
        """
        this mode does not do anything usefull except illustrate a simple "mode subroutine"
        """
        self.mode              = "TutorialExample"  # this name will appear in the title of the window
                                                    # to help keep track of which mode you are using

        self.baudrate          = 19200              # changes the baucrate from the default to 19200

        # the send_ctrls is a list of 3 valued tuples
        # for each item in the list you will have a "send button", a button that will send the contents of
        # the data entry field to the right of it to your comm port.
        # the first item of the tuple is a sting whose test will be on the button
        # the second is a string with the initial or default value for the data entry field 
        # the third is a boolean, True make the data entry field editable, otherwise it is protected from edit
        self.send_ctrls = [
                # text                      cmd               can edit
                ( "Send",                    "",              True ),
                ( "Send",                    "",              True ),
                ( "Different Title",         "default",       True ),
                ( "More Different",          "yes different", True ),
                ]
        # you may get extra buttons with default values to fill the space

Some of the Parameters

Search in the code for more details on these parameters

  • logger_id: the id used in the logging file
  • pylogging_fn: file name for the python logging
  • logging_level: python logging level of severity for message to be logged to the logging file
  • win_geometry: the size of the window when first opened
  • ex_editor: name of an executable file used to edit files related to the terminal

Comm Related

  • port_list: a list of ports that the automatic connect routine will use to find a connection
  • port'Bold text' = "COM3" #
  • baudrate = 19200 # 9600
  • serialAppend = "\r\n" # "\r\n" is car. return line feed.


  • get_arduino_version' = "v" # sent out port to get arduino version
  • arduino_version = "GreenHouse" # should be part of the string th
  • arduino_connect_delay = 10 # may not be implemented yet


  • gui_sends = 15 # number of send frames in the gui beware if 0
  • max_send_rows = 3 # the send areas are added in columns this many rows long, then a new

Extended Processing

If you want to add some of your own GUI and processing elements to the terminal the next parameters add a module name and class name that will be loaded into the application

  • ext_processing_module: module name
  • ext_processing_class: class name


Automatically Set

  • our_os: "win32" if your are running windows


For the Second Thread

  • queue_length = 20
  • queue_sleep = .1

default_scroll = 1 # 1 auto scroll the recieve area, else 0

  1. ---------- self.start_helper_function = gh_processing.GHProcessing.find_and_monitor_arduino

start_helper_function = "find_and_monitor_arduino" # now using eval, may need to do same with args, start_helper_args = ( ) # () empty ( "x", ) one element start_helper_delay = 0 # in seconds must be > 0 to start

  1. open comm port on startup
  • auto_open = False # true to open port on start up #  !! *todo


# these control how data is displayed in the receive area ( which also shows data send and other information ) prefix_send = "# >>> " # prefix for data sent

  • prefix_rec = "# <<< " # prefix for data received
  • prefix_info = "# !!! " # prefix for informational messages
  • echoSend = True # locally echo the sent characters


  1. This is how often in ms to poll the comm port, faster makes it more responsive, uses
  2. more resources
  • gt_delta_t = 50 # in ms -- lowest I have tried is 10 ms, could not see cpu load
  • ht_delta_t = 100/1000. # TIME FOR helper thread polling this uses time so in seconds, sorry for confusion

self.send_array_mod = 5 # see task, send array

  1.  ?? not implemented should it be?

block_port_closed = False # block sending if port is closed # *todo -- or some warning

Appearance

  • id_color: color for an "ID pane" just below the title bar of the window
  • id_height: height of the "ID pane" if 0 there is no pane


bk_color = "blue" # color for the background, you can match the id color or use a neutral color like gray

  • bk_color = "gray"


icon = r"smaller.ico" # greenhouse will rename == this has issues on rasPi

Obsolete Doc, Remove soon

  • Sets part of the title of the application.
  • Sets the communications parameters. Sometimes a little confusing about port names. The arduino IDE sometimes is better at finding the name, check it. Also use the <Ports> button on the GUI. On the apple we have found from <Ports> ('/dev/tty.usbmodem1411', True) and in the parameter file using self.port = "/dev/tty.usbmodem1411" gave a good connection. Sometimes a reboot will result in a change of the port name.
  • Specifies a program for file editing.
  • Sets the size of the application.
  • Defaults data to be sent.
  • Change number of send areas.
  • More see the file.

An Intermediate Difficulty Parameter Example

  • This is based on the file ..../smart_terminal/example_parms/parameters_intermediate.py.
  • The parameters include all the basic parameters plus ones to support a greenhouse arduino monitor.
  • You should also look at the arduino application and the SmartTerminal extension to support it GreenHouse Monitor Program as they are closely related.
  • Well commented read the file!

What thisParameter File Does

  • Everything the basic file does plus the following.
  • The SmartTerminal needs some additional code to support the GreenHouse arduino program. The code is gh_csv_processing.GHCSVProcessing. To cause this to be loaded we have the following:
        ....
        elif self.mode == "GreenHouseCSV":
            # this is the module and class name of another class that will be built to support
            # automatic processing of a anduino monitoring a greenhouse
            # this also adds buttons to the gui
            self.ext_processing_module      = "gh_csv_processing"
            self.ext_processing_class       = "GHCSVProcessing"

In the code above we use the "meta" parameter self.mode to make it easy to switch on/off these settings ( by changing self.mode ).

  • The parameter file can be used to customize the send buttons, for the GreenHouse adaptation I use a more advanced version of these settings:
     self.send_ctrls        = [ ( "Version", "v", False ),  ( "Help", "h", False ), "simple default text" ]

In this case instead of just changing the default values of the string to be sent, I have also changed the button text and the editablity of the send field. This is done by using a tuple for any given button in the form ( string_button_text, string_send_default, editablity

  • The terminal can probe the communications ports, find a port that opens, send a string to the arduino, and look for a particular response to verify that it is connected to the desired port. This takes the following settings:
        self.get_arduino_version    = "v"              # sent out port to get arduino version
        self.arduino_version        = "GreenHouse"     # should be part of the string the arduino responds with match with the arduino code


  • Another setting is required for the probe of communications ports. Here it is ( set up for automatic switching between operating systems )

        # used to probe around for ports
        if  self.os_win:
            self.port_list  =  [ "COM11", "COM12", "COM13", "COM14", "COM15", "COM16", "COM17", ]
        else:
            self.port_list  =  [ "/dev/ttyUSB0", "/dev/ttyUSB1", "/dev/ttyUSB2", "/dev/ttyACM0", "/dev/ttyACM1", "/dev/ttyACM2", ]

  • Data is saved to a csv file, but what is the file name. Here is its setting:
        # for saving csv data 
        self.csv_filename   = "csv_data.csv"

even more

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox