POV display

From OpenCircuits
(Difference between revisions)
Jump to: navigation, search
(move external links from projects)
(yet another POV display)
Line 114: Line 114:
 
* [http://crushingabyss.com/sunrise_alarmclock/index.html Sunrise LED Alarm Clock] ATMega8515 controlling two color-mixed high-power LED channels with PWM.  Also contains a RTC circuit and a serial port.  Full source including PC Windows serial port communication code.
 
* [http://crushingabyss.com/sunrise_alarmclock/index.html Sunrise LED Alarm Clock] ATMega8515 controlling two color-mixed high-power LED channels with PWM.  Also contains a RTC circuit and a serial port.  Full source including PC Windows serial port communication code.
 
* [http://dotmatrixdesign.tumblr.com/ dotmatrixdesign: Twitter LED Scroller Build Log]: an Arduino shield for a 7x5 LED matrix, and all the schematics, board layouts, Arduino firmware, and PC software to make it scroll text from a Twitter feed.
 
* [http://dotmatrixdesign.tumblr.com/ dotmatrixdesign: Twitter LED Scroller Build Log]: an Arduino shield for a 7x5 LED matrix, and all the schematics, board layouts, Arduino firmware, and PC software to make it scroll text from a Twitter feed.
 +
* [http://www.thekeeser.com/Projects/mechanically_scanned_led_display.htm "Mechanically Scanned LED display"] by Chris "thekeeser". Using PIC16F628, a infrared 1 pulse per revolution sensor so it can automatically adapt to any rotation rate, and multi-colored LEDs. Detailed notes on the software development.
  
  
  
 
[[category:projects]]
 
[[category:projects]]

Revision as of 08:33, 30 November 2010

POV display

A "persistence of vision display" (POV display) has only a single line of LEDs blinking on and off. The display mechanically sweeps it across a person's field of view, giving the illusion of a 2D display.

(Do I need a diagram or a picture here?)

(Nearly all LED displays in microwave ovens and alarm clocks electrically sweep the digits across a person's field of view, giving the illusion that it's displaying all 4 digits of the time "12:55" when actually only one digit is illuminated at any one instant).

User:DavidCary is building yet another "POV display".

I plan on putting a few features into my display that I haven't seen in any other so far:

  • bright blue LEDs (even though blue is usually the most expensive color ... although sometimes "true green" is even more expensive than blue).
  • no slip rings -- just pumping energy across an air gap
  • ... and a few other features that I'm keeping hush-hush.

I want lots of lumens. Unfortunately, when I go to pick LEDs out of the catalogs, they're not rated in lumens, they're rated in candelas.



Is it even possible to estimate "lumens" from the catalog information?

You can use this table to get an approximate conversion from candelas to lumens. Find your LED beam width in degrees, and divide the candelas number in your specs by the cd/lm factor listed for that beam angle to get lumens.
beam angle cd/lm
beam angle = 5 divide candela value by 167.22
beam angle = 10 divide candela value by 41.82
beam angle = 15 divide candela value by 18.60
beam angle = 20 divide candela value by 10.48
beam angle = 25 divide candela value by 6.71
beam angle = 30 divide candela value by 4.67
beam angle = 35 divide candela value by 3.44
beam angle = 40 divide candela value by 2.64
beam angle = 45 divide candela value by 2.09

Hope this helps.....Dr. Andrew Thomas...

Do you know what the difference is? Does your flashlight really produce 10 times the light ( in lumens)? Or does the flashlight merely focus its light on a tiny spot, so that that spot gets 10 times as many candelas ?

For example, check out these 2 LEDs: $8.75 SSP-LX6144C7UC : 4000 mcd at 120 mA $8.75 SSP-LX6144D7UC : 1800 mcd at 120 mA

From the mcd rating, it appears that the first one is more than 2wice as bright -- and it is, if you're directly in front of it when you look at it. However, if you're even the tiniest bit off-center, the second one is much brighter -- in fact, the total lumens that second LED puts out (2500 mlm) is slightly more than the total lumens than the first one. If you diffuse the light and try to light up a whole room with an array of them, the second one will make the room brighter.

I'm currently planning on using these in my first POV display:

  • $1.32 Telux TLWB7900 : blue : 330 mlm, 231 mcd at 50 mA. (price in ones from http://Newark.com/ )

Other LEDs I considered using in my POV display (and may re-consider for my next one):

  • $18.89 "Lamina light engine" BL-22B1-0140 : 22000 mlm at 420 mA. (this price includes the required heat sink -- price in ones from http://Digikey.com/ ). This has the most lumens per dollar I've found so far (for blue LEDs).
  • $8.750 Sunbrite LuxLEDs SSP-LX6144D7UC blue: 120 mA, 2500 mlm, 1800 mcd (Odd that the red Sunbrite LuxLEDs are cheaper at Newark, the other colors cheaper at Digikey.) cheapest $/lumen blue LED, except for the "light engine"
  • $2.550 Lumex "DSP LED" 67-1876-ND: blue, 5 mm, 2500 mcd ( DigiKey ) apparently have some kind of internal chip. All colors run at 2.0 V nominal (1.5 V minimum) (rather than running on current like most LEDs. unfortunately, the data sheet doesn't suggest how much current they take -- I presume more than 20 mA).
  • $1.600 Sunbrite "based LED" SSP-01TWB7UWB12 (441-1007-ND) blue 10 mm 20 mA 7000 mcd
  • $5.980 GM5WA06270A SMT RGB (35 mA red, 35 mA green, 35 mA blue) 3000 mcd (full color range -- apparently used for digital camera flash ?) (Digikey)
  • Mouser: hi-power LEDs ( http://www.mouser.com/search/refine.aspx?Ntt=LEDs+hi-power ) shows "lumens" directly -- exactly what I wanted.

further reading

Many POV devices are based on the PIC, see the PIC Links and search on POV.
Spoke-POV and propeller clocks links:

While most POV displays spin the LEDs in a complete circle, some "wiggle" the LEDs back and forth:


Is this http://led-display-and-design-swicki.eurekster.com/ relevant?

I think so--71.234.233.163 18:06, 22 June 2007 (PDT)


Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox