DsPIC30F 5011 Development Board

From OpenCircuits
Revision as of 20:07, 9 December 2008 by Tcwden (Talk | contribs)

Jump to: navigation, search



Features of dsPIC30F5011

  • 2.5 to 5V
  • Up to 30MIPs
  • High current/sink source I/O pins: 25mA
  • DSP Instruction Set
  • Dual programming techniques: ICSP and RTSP
  • UART: up to 2 modules
  • I2C: up to 1Mbps
  • 10-bit A/D, 1.1 Msps
  • 12-bit A/D, 200 ksps
  • 44K flash (66Kb), 4Kb RAM, 1Kb EEPROM
  • No DAC
  • Pin-to-pin compatible with other dsPICs
Table 1.1 Comparison with Compatible dsPICs
dsPic Price
MIPs Flash
IC OC Motor
30F5011 5.91 30 66 4 1 52 16 8 8 0 5x16bit
0 2 2 1 2 1
30F6011A 7.73 30 132 6 2 52 16 8 8 0 5x16bit
0 2 2 1 2 0
30F6012A 7.85 30 144 8 4 52 16 8 8 0 5x16bit
0 2 2 1 2 1
33FJ128GP206 4.62 40 128 8 0 53 18 8 8 0 9x16bit
0 2 2 1 0 1
33FJ128GP306 4.81 40 128 16 0 53 18 8 8 0 9x16bit
0 2 2 2 0 1
33FJ128GP706 5.49 40 128 16 0 53 18 8 8 0 9x16bit
0 2 2 2 2 1
33FJ128MC506 4.97 40 128 8 0 53 16 8 8 8 9x16bit
1 2 2 2 1 0
33FJ128MC706 5.38 40 128 16 0 53 16 8 8 8 9x16bit
1 2 2 2 1 0
33FJ256GP506 6.11 40 256 16 0 53 18 8 8 0 9x16bit
0 2 2 2 1 1

Web Page



Code Examples

Related Development

Programming Methods

  • There are 2 programming methods: In-Circuit Serial Programming (ICSP) and Run-Time Self-Programming (RTSP)
  • ICSP allows the devices to be programmed after being placed in a circuit board.
  • RTSP allows the devices to be programmed when an embedded program is already in operation.

ICSP: External Programmer (ICD2)

  • Two types of ICSP are available: ICSP and Enhanced ICSP. Both of them require setting MCLR# to VIHH (9V – 13.25V).
  • Standard ICSP
    • Use external programmer (e.g. MPLAB® ICD 2, MPLAB® PM3 or PRO MATE® II) only.
    • Required low-level programming to erase, program and verify the chip.
    • Slower, because codes are serially executed.
    • Program memory can be erased using Normal-Voltage (4.5 – 5.5V) or Low-Voltage (2.5V – 4.5V).
  • Enhanced ICSP
    • Use external programmer and Programming Executive (PE).
    • PE is stored in the on-chip memory.
    • PE allows faster programming.
    • PE can be downloaded to the chip by external programmer using the standard ICSP method.
    • PE contains a small command set to erase, program and verify the chip, avoiding the need of low-level programming.

Hardware Interface

Pin Used by ICSP
Pin Label Function Pin Number
MCLR# Programming Enable 7
VDD Power Supply 10, 26, 38, 57
VSS Ground 9, 25, 41, 56
PGC Serial Clock 17
PGD Serial Data 18

Available Programmers in the Market
Product Name Interface with PC Interface with Device Price (US) Postage (US) Total (US)
MPLAB® ICD 2 USB or RS232 6-PIN RJ-12 connector $159.99 - -
Full Speed USB Microchip ICD2
Debugger and Programmer
USB 6-PIN ICSP connector
6-PIN RJ-12 connector
$72.00 $12.00 $84.00
Mini Microchip Compatible ICD2
Debugger and Programmer
RS232 6-PIN ICSP connector
6-PIN RJ-12 connector
$45.00 $10.00 $55.00
ICDX30 RS232 6-pin RJ-11 $51.00 $47.46 $98.46
*Clone Microchip ICD2 (Now Using) USB 6-pin flat cables $30.00 $12.00 $42.00

DIY ICD 2 Programmer Circuit
Source Schematic PIC16F877A Bootloader
Patrick Touzet Yes HEX
Nebadje Yes Zip

Software Interface

  • The program can be written and compiled in an Integrated Development Environment (IDE) using either Assembly or C. The complied codes are then loaded to the device through the external programmer.

Summary of IDE
Product Name Features OS Price (US$)
MPLAB® IDE Assembler Only Windows Free
MPLAB® C30 Assembler and C-Compiler Windows $895.00 (Free student version1)
Piklab Assembler and C-Compiler Linux Free
  1. Full-featured for the first 60 days. After 60 days, some code optimization functions are disabled. The compiler will continue to function after 60 days, but code size may increase.

RTSP: COM Port (Bootloader)

  • RTSP works in normal voltage (MCLR# no need to raise to VIHH).
  • No literature has mentioned the incorporation of Programming Executive (PE). Presumably, since Enhanced ICSP needs to set MCLR# to VIHH, RTSP cannot use PE.
  • Refer to bootloader section.

IC Requirements

IC Requirements
Part No. Description Min Temp Max Temp Min Volt Max Volt Typ Cur Max Cur
dsPIC30F5011-30I/PT uP -40oC 85oC 2.5V [1] 5.5V 145mA 217mA
MAX3232ESE RS232 driver -40oC 85oC 3.0V 5.5V 0.3mA 1.0mA
DS3695N RS485 driver -40oC 85oC 4.75V 5.25V 42mA 60mA
DAC6574IDGS 10-bit Quad-DAC I2C -40oC 105oC 2.7V 5.5V 0.6mA 0.9mA
74HC14D Quad-Schmitt Trigger -40oC 125oC 2.0V 6.0V 0.02mA
Overall -40oC 85oC 4.75V 5.25V <300mA [2]
dsPIC33FJ128GP306-I/PT uP -40oC 85oC 3.0V [1] 3.6V 74mA 250mA
ADM3485EARZ RS485 driver -40oC 85oC 3.0V 3.6V 1.1mA 2.2mA
24LC256-I/SN 256kBits I2C EEPROM -40oC 85oC 2.5V 5.5V 400uA 3mA
LM3940IMP-3.3 5V-3.3V Regulator -40oC 125oC 5.0V 7.5V 10mA 250mA
  1. Minimum voltage measured is 3.3V (with 2 LEDs blinking) running at 30MHz.
  2. Measured current at 5V is 180mA (with 2 LEDs blinking only)

Development Environment


PIC setup win.JPG

  • C-Compiler, Assembler and Linker are under GNU license.
    • MPLAB C30 C Compiler (*.c -> *.s)
    • MPLAB ASM30 Assembler (*.s -> *.o)
    • MPLAB LINK30 Linker (*.o -> *.bin)
  • PA optimizer, simulator, runtime libraries, header files, include files, and linker scripts are not covered by GNU. Reference is here.
  • Microchip has integrated ASM30, LINK30, assembly header files, linker scripts in MPLAB IDE, which is free for download.
  • MPLAB C30 costs US$895. A 60-day free student version is also available. After 60-days, the optimizer is automatically disabled, while other tools can still function properly. Refer to Table 2.4.

C Libraries in MPLAB C30
Library Directory
(\\Microchip\MPLAB C30)
Major functions
DSP Library
(e.g. libdsp-coff.a)
Vector, Matrix, Filter, etc.
16-Bit Peripheral Libraries
(e.g. libp30F5011-coff.a)
ADC12, IOPort, UART, I2C, etc.
Standard C Libraries
(e.g. libc-coff.a, libm-coff.a, libpic-coff.a)
stdio.h, time.h, float.h, math.h,
MPLAB C30 Built-in Functions none _buildin_addab, _buildin_add, _buildinmpy, etc


PIC setup linux.JPG

  • C Compiler, Assembler and Linker are under GNU license.
    • The code can be downloaded from Microchip at here.
    • Current MPLAB ASM30 Assembler: v2.04
    • Current MPLAB C30 Compiler: v2.04
  • John Steele Scott has made templates that can be readily used by Debian-based systems.
  • For v1.32, the necessary conversion to *.deb has been done already at here.
    • Download pic30-1.32-debian.tar.bz2 for Template v1.32.
    • Download pic30-binutils_1.32-1_i386.deb for the assember.
    • Download pic30-gcc_1.32-1_i386.deb for the compiler.
  • For v2.00
  • For v3.01, convert the Toolchain following instructions at here
    • Pre-install these packages: dpkg-dev, debhelper, bison, flex, sysutils, gcc-3.3, fakeroot
      • cmd: sudo apt-get install dpkg-dev debhelper bison flex sysutils gcc-3.3 fakeroot
    • Download and unzip template: pic30-3.01.tar.bz2
    • Download assembler: mplabalc30v3_01_A.tar.gz. Save under /pic30-3.01/pic30-binutils-3.01/upstream/
    • Download c-compiler: mplabc30v3_01_A.tgz. Save under /pic30-3.01/pic30-gcc-3.01/upstream/
    • Install MPLAB_C30_v3_01-StudentEdition under Windows
    • Copy directories /include, /lib, /support, and /bin/c30_device.info to pic30-3.01/pic30-support-3.01/upstream/
    • Pack pic30-binutils into deb file
      • goto /pic30-3.01/pic30-binutils-3.01/
      • type cmd: dpkg-buildpackage -rfakeroot -b
    • Pack pic30-gcc-3.01 into deb file
      • goto /pic30-3.01/pic30-gcc-3.01/
      • type cmd: dpkg-buildpackage -rfakeroot -b
    • Pack pic30-gcc-3.01 into deb file
      • goto /pic30-3.01/pic30-support-3.01/
      • type cmd: dpkg-buildpackage -rfakeroot -b
    • install pic30-binutils_3.01-1_i386.deb
      • type cmd: sudo dpkg -i pic30-binutils_3.01-1_i386.deb
    • install pic30-gcc_3.01-1_i386.deb
      • type cmd: sudo dpkg -i pic30-gcc_3.01-1_i386.deb
    • install pic30-support_3.01-1_all.deb
      • type cmd: sudo dpkg -i pic30-support_3.01-1_all.deb
  • Important Note: Only the compiler is free. The header files and library are owned by Microchip.
    • Thomas Sailer suggested to download the Student version of C30 compiler and then build the libraries without source code. A package template for Fedora system is available here.
    • Instructions for filling the upstream direction is available here.
    • Alteratively, Stephan Walter has started a project to develop C Runtime Library for dsPIC.
      • Current libraries in version 0.1.1 include: assert.h, cdefs.h, ctype.h, errno.h, inttypes.h, stdint.h, stdio.h, stdlib.h, string.h
  • Burning Program Codes to Target Board
  1. Use 'dspicprg and dspicdmp' utilities developed by Homer Reid to burn hex code (*.hex) to devices. See Reference here. Through serial port only?
  2. Use Piklab IDE. Details on file format not known.
  3. Use MPLAB IDE to burn hex code (*.hex) to devices.

Code Optimization

  • Below is a comparsion between different optimization levels for the project including drivers for 2 projects.
Comparison between differnt optimization levels
Optimization Description Project 1
Code Size
Project 1
Data Usage
Project 2
Code Size
Project 2
Data Usage
O0 No optimization
Fastest Compilation
6222 (9%) 178 (4%) 26,037 (38%) 710 (17%)
O1 Optimize
Tries to reduce code size and execution time.
4473 (6%) 178 (4%) 22,290 (32%) 710 (17%)
O2 Optimize even more
Performs nearly all supported optimizations
that do not involve a space-speed trade-off.
Increases both compilation time and the
performance of the generated code.
4422 (6%) 178 (4%) 21,993 (32%) 710 (17%)
O3 Optimize yet more.
O3 turns on all optimizations specified by O2
and also turns on the inline-functions option.
4485 (6%) 178 (4%) 22,176 (32%) 710 (17%)
Os Optimize for size.
Os enables all O2 optimizations that do not
typically increase code size. It also performs
further optimizations designed to reduce code
4356 (6%) 178 (4%) 21,885 (32%) 710 (17%)

Software Architecture

Programming Tips

  • Description on developing drivers with POSIX API

Bootloader Development

  • Description on concepts and development on bootloader

USB-RS232 Bridge

  • As USB ports are becoming more and more common, COM ports and Parallel ports may be redundant in the next few years. This section explore the possibilities of programming the target board through a USB port.
  • There are two options:
  1. Use an external USB/RS232 adaptor, the driver will emulate a virtual COM port, such as Prolific and FDTI. Ingenia has tested its bootloader with some USB-232 manufacturers (silabs, FTDI, etc..). However, the programming failed with our Prolific adapter. Application program may use JavaComm API (javax.comm) and/or RXTX to drive the COM port.
  2. Modified the bootloader program on PC to support USB communication. e.g. using jUSB and JSR-80 (javax.usb). External circuits such as PIC18F4550 and MAX232 are required.
   |--User's App.--|-------Device Manager------|-------USB-RS232 Interface------|---dsPIC---|
  Option 1:
    +-------------+  +----------+  +----------+  +---+  +------------+  +-----+  +--------+
    | Application |--| JavaComm |--| Virtual  |==|USB|--|    FDTI    |--|RS232|==| Target |
    |   Program   |  |  RXTX    |  | COM Port |  +---+  | Circuitary |  +-----+  | Board  |
    +-------------+  +----------+  +----------+         +------------+           +--------+
  Option 2:
    +-------------+          +--------+          +---+  +------------+  +-----+  +--------+
    | Application |----------| JSR-80 |==========|USB|--| PIC18F4550 |--|RS232|==| Target |
    |   Program   |          |  jUSB  |          +---+  |   MAX232   |  +-----+  | Board  |
    +-------------+          +--------+                 +------------+           +--------+
  • Currently, when RXTX is incorporated with JavaComm API, operating systems supported include Linux, Windows, Mac OS, Solaris and other operating systems. On the other hand, jUSB and JSR-80 only works for linux.

FDTI Chipset

  • FT232RL communicates with PC via USB to provide 1 UART channel.
  • Datasheet can be downloaded here.
    • Refer to Fig. 11 (Page 19) for Bus Powered Configuration.
    • Refer to Fig. 16 (Page 24) for for UART TTL-level Receive [RXD -> 1], Transmit [TXD -> 4], Transmit Enable [CBUS2/TXDEN -> 3]. Omit Receive Enable [CBUS3/PWREN#] and use [CBUS2/TXDEN -> 2]
    • Refer to Fig. 15 (Page 23) for LED Configuration: [CBUS0/TXLED#] and [CBUS1/RXLED#]
  • Virtual COM Port Drivers can be downloaded here.

Programming the Device

  • Description on how to use dsPicProgrammer to download firmware to dspic

Remote Access

  • At the moment, local devices (e.g. EEPROM, ADC, DAC, etc.) can only be accessed locally through POSIX functions such as open(), read(), write(), ioctl().
  • However, a client may need to access these devices on a remote server. This section reviews the background and gives some ideas on its possible implementation.


  • A remote file access protocol, to transfer "files" (i.e. device's data) such as:
  1. File Transfer Protocol (FTP): Required files are copied from sever to client for manipulation
  2. Remote Shell (RSH): Required files are copied from sever to client for manipulation
  3. Network File System (NFS): Required files are manipulated on sever
  • An API to access files using a selected protocol, such as:
  1. lam_rfposix: A POSIX-like remote file service for Local Area Multicomputer
  2. API employed by VxWorks: VxWorks is a Unix-like real-time operating system, commonly used for embedded systems.

API Reference for VxWorks

Conversion to dsPIC33F Devices

  • This section discusses the conversion required from dsPIC30F5011 to dsPIC33FJ128GP306.
  • Refer to official document dsPIC30F to dsPIC33F Conversion Guidelines (DS70172A).
  • Note that this section does not mainly intend to introduce the new functionalities of dsPIC33F devices. It only serves the purpose to summarise the major (if not minimum) changes required to port the setup of dsPIC30 to dsPIC33 devices.


Related software download links for dsPicBootloader and dsPicProgrammer
Program Site Remarks
JDK website Download latest JDK
RXTX website Download rxtx-2.1-7-bins-r2.zip or later
dsPicBootloader click Under "dsPicBootloader/", download bl_5011.s or bl_j128gp306.s
dsPicProgrammer click Under "dsPicProgrammer/", dowload dsPicProgrammer.jar

Alternatively, if you want to compile yourself or modify the source code, download
all source files under "dsPicProgrammer/" plus RdFileIntelHex.java under
You should also install RXTX on your local machine as recommended in the readme file.
Ingenia's bootloader website Download original ingenia's bootloader


  • dspic gcc compiler for constant problem
  • add chip to stable voltage upon power failure or to detect low voltage, and generate interrupt for dsPic to execute shutdown routine (e.g. save important data to NVM, shutdown ethernet etc.)
  • program the bootloader into flash under linux platform
Personal tools